스테이블 디퓨전은 어떤 원리로 만들어져 있을까?
총 10단계로 이미지 생성 AI 를 밑바닥 부터 단단하게 다져 올라가며 배울 수있고
그 내용들이 매우 흥미롭고 재미있으며 예제 코드가 제공되어 직접 실습해보며 즐겁게 공부하는 맛이 있다 ~
10단계로 알아보는 이미지 생성 모델의 원리!
생성형 AI와 함께하는 『밑바닥부터 시작하는 딥러닝 5』
이 책은 정규 분포와 최대 가능도 추정과 같은 기본 개념에서 출발하여 가우스 혼합 모델, 변이형 오토인코더(VAE), 계층형 VAE 그리고 확산 모델에 이르기까지 다양한 생성 모델을 설명합니다. 수식과 알고리즘을 꼼꼼하게 다루며 수학 이론과 파이썬 프로그래밍을 바탕으로 한 실제 구현 방법을 알려줍니다. 생성 모델을 이론뿐만 아니라 실습과 함께 명확하게 학습할 수 있습니다. 특히 확산 모델에 이르는 10단계의 과정을 하나의 스토리로 엮어 중요한 기술들을 서로 잇고 개선할 수 있도록 구성했습니다. 이 책과 함께 생성 모델을 밑바닥부터 시작해보세요.
CHAPTER 1 정규 분포
_1.1 확률의 기초
_1.2 정규 분포
_1.3 중심 극한 정리
_1.4 표본 합의 확률 분포
_1.5 우리 주변의 정규 분포
CHAPTER 2 최대 가능도 추정
_2.1 생성 모델 개요
_2.2 실제 데이터로 생성 모델 구현
_2.3 최대 가능도 추정 이론
_2.4 생성 모델의 용도
CHAPTER 3 다변량 정규 분포
_3.1 넘파이와 다차원 배열
_3.2 다변량 정규 분포
_3.3 2차원 정규 분포 시각화
_3.4 다변량 정규 분포의 최대 가능도 추정
CHAPTER 4 가우스 혼합 모델
_4.1 우리 주변의 다봉 분포
_4.2 가우스 혼합 모델 데이터 생성
_4.3 가우스 혼합 모델의 수식
_4.4 매개변수 추정의 어려움
CHAPTER 5 EM 알고리즘
_5.1 KL 발산
_5.2 EM 알고리즘 도출 ①
_5.3 EM 알고리즘 도출 ②
_5.4 GMM과 EM 알고리즘
_5.5 EM 알고리즘 구현
CHAPTER 6 신경망
_6.1 파이토치와 경사법
_6.2 선형 회귀
_6.3 매개변수와 옵티마이저
_6.4 신경망 구현
_6.5 토치비전과 데이터셋
CHAPTER 7 변이형 오토인코더
_7.1 VAE와 디코더
_7.2 VAE와 인코더
_7.3 ELBO 최적화
_7.4 VAE 구현
CHAPTER 8 확산 모델 이론
_8.1 VAE에서 확산 모델로
_8.2 확산 과정과 역확산 과정
_8.3 ELBO 계산 ①
_8.4 ELBO 계산 ②
_8.5 ELBO 계산 ③
_8.6 확산 모델의 학습(알고리즘)
CHAPTER 9 확산 모델 구현
_9.1 U-Net
_9.2 사인파 위치 인코딩
_9.3 확산 과정
_9.4 데이터 생성
_9.5 확산 모델의 학습(구현)
CHAPTER 10 확산 모델 응용
_10.1 조건부 확산 모델
_10.2 점수 함수
_10.3 분류기 가이던스
_10.4 분류기 없는 가이던스
_10.5 스테이블 디퓨전
APPENDIX A 다변량 정규 분포의 최대 가능도 추정법 도출
_A.1 μ의 최대 가능도 추정
_A.2 2차 형식의 미분([식 A.4]의 증명)
_A.3 Σ의 최대 가능도 추정
_A.4 대각합과 미분([식 A.12]의 증명)
APPENDIX B 옌센 부등식
_B.1 볼록 함수와 옌센 부등식
_B.2 오목 함수와 로그 함수
_B.3 ELBO 도출
APPENDIX C 계층형 VAE의 이론과 구현
_C.1 2계층 VAE의 구성요소
_C.2 ELBO의 식 전개
_C.3 몬테카를로 방법에 따른 ELBO의 근삿값
_C.4 2계층 VAE 구현
_C.5 구현 코드
APPENDIX D 수식 기호 목록
_D.1 이 책에서 사용하는 기호
_D.2 이 책에서 사용하는 수식
정규 분포에서 확산 모델까지, 생성 모델 완전 정복!
수식과 코드로 명쾌하게 풀어낸 최고의 생성 모델 안내서!
명불허전 『밑바닥부터 시작하는 딥러닝』 시리즈가 이번에는 생성형 AI와 함께합니다.
스테이블 디퓨전, 미드저니, DALL-E 등과 같은 이미지 생성 AI가 다양한 분야에서 관심을 얻고 활용되고 있습니다. 이들 기술의 배경에는 딥러닝을 활용한 '생성 모델'이 있습니다. 이번 편에서는 바로 생성 모델에서 주목받고 있는 '확산 모델(Diffusion Model)'을 다룹니다.
정규 분포, 최대 가능도 추정(MLE)과 같은 기본 개념에서 시작해 가우스 혼합 모델(GMM), 기댓값 최대화 알고리즘(EM), 변이형 오토인코더(VAE), 계층형 VAE 그리고 확산 모델까지의 여정을 10단계로 나누어 안내합니다. 단순히 이미지나 결과를 전달하는 데 그치지 않고 ‘왜 그렇게 되는지’와 ‘어떻게 그 결과를 얻을 수 있는지’도 빼놓지 않았습니다. 이를 위해 수식을 세심하게 다루며 작은 부분까지 신경 썼습니다.
이론과 실습을 아우르는 체계적인 커리큘럼을 제공하기 때문에 기초부터 차근차근 배우고 실습을 통해 생성 모델의 원리를 깊게 이해할 수 있습니다. 확산 모델을 비롯한 생성 모델을 더욱 깊이 이해하고 응용하고자 하는 모든 이에게 이 책은 든든한 길잡이가 될 것입니다.
대상 독자
(미적분학, 선형대수학 등의 수학과 파이썬 기초 지식이 있으면 좋습니다.)
- 생성 모델 구현 원리와 응용에 대해 궁금한 개발자
- 자연어 처리, 이미지 생성, 음성 합성 등 다양한 분야에 생성 모델을 적용하고 싶은 개발자
주요 내용
- 1장 정규 분포
- 2장 최대 가능도 추정
- 3장 다변량 정규 분포
- 4장 가우스 혼합 모델
- 5장 EM 알고리즘
- 6장 신경망
- 7장 변이형 오토인코더(VAE)
- 8장 확산 모델 이론
- 9장 확산 모델 구현
- 10장 확산 모델 응용
추천사
믿고 보는 『밑바닥부터 시작하는 딥러닝』이 새로운 시리즈로 돌아왔습니다. 책을 끝까지 읽고 나니 왜 여전히 많은 사람이 이 시리즈를 딥러닝 입문서로 선택하는지 다시 한번 알게 되었습니다. 이번 편은 전 세계가 주목하는 생성형 AI의 핵심인 확산 모델에 대해 다루며 최신 생성형 인공지능의 탄생 배경에 깔린 이론들을 탄탄한 흐름 속에서 익힐 수 있습니다. 딥러닝을 책으로 공부하다 보면 크게 두 가지 아쉬움을 느끼게 됩니다. 하나는 이론과 실습의 균형이 잘 잡힌 개념서를 찾기 어렵다는 것이고, 다른 하나는 최신 이론을 책으로 접하기가 쉽지 않다는 점입니다. 하지만 이번 편은 두 마리 토끼를 다 잡았다고 생각합니다.
_강민재, 성균관대학교 전자전기공학부
생성형 AI의 기반이 되는 여러 확률 이론을 논문으로 배울 수 있다고 하지만, 기반 지식이 없는 상태에서는 그 내용을 제대로 파악하고 적용하기가 어려울 수 있습니다. 다른 『밑바닥부터 시작하는 딥러닝』 시리즈와 마찬가지로 이 책 역시 생성 모델에 대한 기본 지식부터 수식 증명까지 단계별로 설명하는 방식을 따르고 있습니다. 수식에 대한 상세한 설명과 함께 실제 코드 구현까지 다루고 있기 때문에, 수식이 어렵지만 생성 모델의 기초를 탄탄히 다지고자 하는 사람에게 좋은 길잡이가 될 것입니다.
_강찬석, LG전자 소프트웨어 엔지니어
생성 모델을 이루는 고전 모델부터 확산 모델에 이르기까지, 수학적 개념을 가능한 한 쉽게 풀어내고 코드로 이해를 돕습니다. 생성 모델에 관심이 있다면 이 책을 통해 차근차근 기초를 쌓은 다음 최신 논문 등으로 살을 붙여 나간다면, 분명 해당 분야에 대한 깊이 있는 통찰력을 갖춘 전문가로 성장할 수 있을 것입니다. 딥러닝 입문서로 이만한 책이 있을까요?
_김용회, 숭실대학교 인공지능IT융합학과 박사과정
확산 모델에 필요한 기초 지식부터 세부적인 내용 그리고 코드까지 단계별로 이해할 수 있도록 잘 구성되어 있습니다. 공개된 다른 자료와 비교했을 때 훨씬 직관적이고 이해하기 쉽게 설명하고 있어 많은 분에게 도움이 될 것임을 확신합니다.
_김지훈, 서울대학교병원 연구원
드디어 생성형 AI를 다루는 『밑바닥부터 시작하는 딥러닝』 시리즈가 출간되었습니다. 기존 시리즈의 명성에 이어 생성 모델을 안내하는 대표 도서 중 하나로 자리잡을 것으로 기대됩니다. 생성 모델 분야에서 6년 넘게 일하고 있지만 원리를 설명하기 어려울 때가 있었습니다. 이 책은 기대 이상으로 생성 모델을 명쾌하게 설명하고 있어 이후에도 많은 도움이 될 것 같습니다. 이미 생성 모델을 공부한 분에게도 이 책을 강력히 추천합니다.
_김형섭, 생성형 AI 엔지니어
지난 몇 년 동안 이미지 생성 모델의 발전은 많은 것을 바꿔 놓았습니다. 그 배경에는 복잡한 수학 원리가 있습니다. 수학은 생성 모델에 매료된 이들에게는 진입 장벽으로, 관련 종사자들에게는 지속적인 도전 과제로 남아 있습니다. 『밑바닥부터 시작하는 딥러닝』 시리즈는 주제의 기초 개념부터 시작해 점차 깊은 이해를 돕는 방식으로 정평이 났습니다. 이번에도 생성 모델의 첫걸음인 확률 기초부터 수학적 원리와 그를 구현해낸 코드까지, 수학이나 프로그래밍에 낯선 독자라도 쉽게 접근하고 이해할 수 있도록 구성되어 있습니다. 이 책의 흐름을 차근차근 따라가다 보면, 최신 논문과 기술 문헌을 탐색하기가 한결 더 편해질 것입니다.
_박광석, 모두의연구소 아이펠 AI 교육
최신 딥러닝 모델을 공부하기 시작할 때, 어디서부터 손을 대야 할지 막막한 경우가 많습니다. 특히 확산 모델과 같은 생성 모델들은 확률 분포의 기초부터 공부해야 할지, 이전의 생성 모델들을 먼저 이해하고 넘어가야 할지, 아니면 도구를 사용해 간단히 생성만 해보는 것이 좋을지 고민됩니다. 이 책은 바로 이러한 고민을 덜어주기 위해 체계적인 커리큘럼을 제공합니다. 기초부터 차근차근 배우며 실전 코딩을 통해 생성 모델의 원리를 깊이 있게 이해할 수 있습니다. 이미지와 비디오 생성 모델에 관심 있는 모든 분에게 이 책을 추천합니다.
_박정현, SSG.COM 머신러닝 엔지니어
단순히 기술을 설명하는 데 그치지 않습니다. 생성 모델의 근본 원리를 수학적으로 깊게 다루면서도 독자의 이해를 돕기 위해 다양한 예시와 시각 자료를 풍부하게 활용합니다. 특히 최신 기술인 확산 모델을 10단계로 나누어 상세히 설명한 부분이 이 책의 강점입니다. 생성형 AI에 관심 있는 모든 이에게 필수적인 지침서로서, 딥러닝 초보자부터 생성 모델을 더욱 깊이 이해하고 싶은 전문가까지 모두에게 강력히 추천합니다. 기초부터 최신 기술에 이르기까지 체계적으로 학습할 수 있도록 도와줄 것입니다.
_이석곤, AI/빅데이터팀 수석
이번 편에서는 정규 분포, 다변량 정규 분포, 최대 가능도 추정, 가우스 혼합 모델, VAE 등의 주제를 깊게 다룹니다. 정규 분포부터 시작해 확산 모델에 이르기까지 수식을 먼저 살펴보고 코드로 옮기는 과정을 자세히 안내하며, 각 수식과 기호도 친절히 설명하여 이해하는 데 많은 도움이 됩니다. 파이썬과 기본 수학 지식만 있어도 책에서 설명하는 확률과 통계에 기반한 내용을 이해할 수 있습니다. 학습할 때 옆에 두고 꾸준히 참고할 수 있는 좋은 책입니다.
_이승표, 서버 프로그래머
『밑바닥부터 시작하는 딥러닝 5』는 확산 모델만 설명하는 데 그치지 않고 모델을 이해하는 데 필수적인 수학 지식을 꼼꼼하게 설명합니다. 또한 파이토치, 사이파이, 넘파이를 적절하게 활용한 코드 덕분에 독자가 읽고 실습할 때 어렵지 않다는 점도 이 책의 장점입니다. 확산 모델 이론에 대해 탐구하고 싶은 분에게 추천하며 딥러닝 수학에 자신이 없는 분에게도 큰 도움이 될 것입니다.
_이영빈, 모두의연구소 아이펠 AI 교육
『밑바닥부터 시작하는 딥러닝 5』는 생성형 AI의 핵심인 확산 모델을 이해하고자 하는 모든 이에게 필독서라 할 수 있습니다. 필수적인 수학적 배경을 체계적으로 설명하고 있으며, 확산 모델의 원리를 깊이 있게 이해할 수 있습니다. 이론과 실습을 균형 있게 공부하고 싶은 분, 생성 모델에 대하여 깊이 있게 공부하고자 하는 분에게 적합합니다. 초보자부터 전문가까지 다양한 학습자에게 활용도 높은 유익한 정보를 제공합니다. 특히 생성형 AI 관련 기반 기술을 배우고자 하는 개발자와 연구자가 읽어보기를 권합니다.
_전준규, 농협정보시스템 DT LAB
최근 확산 모델은 이미지 생성, 목소리 합성 등 다양한 분야에서 눈부신 성과를 보이며 인공지능 기술의 핵심으로 자리잡고 있습니다. 그러나 확산 모델을 제대로 이해하기 위해서는 상당한 수학적 지식이 필요합니다. 이 책은 이러한 어려움을 해결해줍니다. 정규 분포라는 기초 개념을 시작으로 VAE를 거쳐 최종적으로 확산 모델에 이르기까지, 각 단계별로 필요한 수학적 개념을 명확하고 이해하기 쉽게 풀어냅니다. 확산 모델을 이해하고 응용하고자 하는 모든 이에게 든든한 길잡이가 될 것입니다.
_조원양, 스마트사운드 AI융합팀 리더
생성형 AI 서비스의 근간에는 확산 모델이라는 수학적 이론이 담긴 생성형 AI 기술이 숨어 있습니다. 이 책은 확산 모델의 이론적 배경과 구현 과정에 대해 제목처럼 밑바닥부터 하나씩 차근차근 설명하고 있습니다. 특히 파이썬 언어로 그 과정을 실제 구현해보는 내용까지 포함되어 있어, 전체적인 이론과 흐름을 이해하는 데 많은 도움이 됩니다.
_최성욱, 삼성전자 VD사업부 Security Lab
자료명 | 등록일 | 다운로드 |
---|---|---|
예제소스 | 2024-10-16 | 다운로드 |