AutoML로 머신 러닝이 발전을 하고 있으며, 하이퍼파라미터의 튜닝도 기계에게 넘기는 기술의 발전을 목도하고 있습니다. 사실 하이퍼파라미터의 의미를 이해하고, 튜닝하는 영역이 데이터 사이언티스트 혹은 AI 전문가의 영역인데 이를 비전문가도 손쉽게 할 수 있도록 도와주는 기술이라고 이해하면 됩니다.
물론 Python을 활용한 코딩이 가능한 사람이어야 한다는 장벽은 존재합니다.
여기서 소개하는 AutoKeras와 KerasTuner와 같은 도구들을 통해 하이퍼파라미터를 신경 쓰지 않은 채 머신러닝을 더욱 쉽게 활용할 수 있고 여러 모델 작업이 효율적으로 가능합니다. 책에 대한 소개를 간략히 하면, AutoML 에 대한 개념 소개를 합니다.
그리고 ML에서 중요한 파이프라인에 대한 설명을 합니다. 파이프라인에 대한 개념이 잡혀 있어야 AutoML과 그 이후에 이루어질 MLOps까지 이해를 할 수 있기 때문입니다.
또한 Keras 기반의 AutoML 라이브러리를 다루기 때문에 친절하게 딥러닝에 대한 기본적인 내용을 설명하고 있어 딥러닝을 공부하고 싶은 독자에게 상당히 친절하게 알려주고 있습니다.
이후 자동화된 엔드투엔드 머신러닝을 위해 AutoKeras를 이용한 설정 및 파이프라인 작업을 설명합니다.
그래프 구조, 블록 구조의 Auto ML 설계 방법 및 오토인코더 모델을 이용한 방법을 설명하고 있으며, 딥러닝을 다룰 때 중요한 요소인 GPU 기반의 AutoML까지 설명하고 있습니다.
또한 분류 예제까지 제공을 하고 있어 이해를 높이는데는 상당히 도움이 됩니다.
다만, ML에 대한 개념이 전무한 상태에서 이 책을 접하기엔 어려울 수 있으며, 전문가 수준은 아니어도 최소한 ML에 대한 이해는 하고 있는 사람이어야 이 책의 효과를 접할 수 있어 보입니다.
"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."