
F A K E I T ‘ T I L YO U M A K E I T : T I P S A N D T R I C K S F O R
I M P R O V I N G I N T E R F A C E R E S P O N S I V E N E S S

Why do some native applications seem so fast while others do not? There is an old adage in
auto racing. “Speed is money, how much do you want to spend?” It doesn’t take long for iPhone
programmers to rub up against a similar problem, one perhaps expressed as “Speed is time, how
much do you have left to spend before release?” Given the limitations of processor power, RAM,
and network bandwidth, not to mention battery drain, writing iPhone applications that display lots
of data is hard. Clever caching, prefetching of data, and optimized drawing is the key to removing
the variable response times that make an app consuming nonlocal or large amounts of data seem
slow to the user.

How can you avoid a "death by a thousand paper cuts" user experience when you have a lot of
data to display? Most of the applications that Apple ships on the iPhone access network services
and many of them deal with large data sets. Mail pulls and caches potentially large amounts of data
from your mail server, the Maps application loads tiles from Google maps, and the weather
application requests the latest weather on demand; even the calendar and contacts applications can
sync with data stored on servers hosted by Microsoft, Google, Yahoo, and Apple. Many well-
reviewed third party applications also pull large quantities of data from the cloud in one way or
another. Facebook, Pandora, AIM, Yahoo Instant Messenger, and many others have developed
offerings that are robust and responsive. Writing an application for the iPhone that displays large
amounts of potentially nonlocal data is not easy. You've probably experienced an application that
seems to start and stop working depending on your network connection or how much
information you’ve loaded. Users of native iPhone applications have different expectations with
regard to interface responsiveness than they do when browsing the web. It's difficult to satisfy a
user who tolerates multiple page loads while using a browser, but who may not tolerate a slow-
scrolling table view or a view that takes a few seconds to download data and render in a native
application.

In this chapter we're going to build two projects. The first project starts out as an app that
displays historical AAPL stock information from Yahoo.com and graphs closing price over time
similar to Apple's own stocks application. As we add functionality, we'll discuss some strategies as
well as some of the trade-offs involved with various methods of caching information from remote
data sources. By the time we’re done, the application will cache and update the stock prices of
several stocks while remaining usable and responsive to the user. The second project deals with
the calculation and display of large amounts of information in a scroll view that is generated and
drawn programatically. In this project, we’ll solve some common performance and user experience
problems related to drawing large amounts of data.

Plotting of historical stock prices with AAPLot

Let’s start with a simple application that charts the last few months of Apple, inc. stock prices.
<<<LINK TO THE SAMPLE CODE: 01AAPLPlotFirstPlot>>>

AAPLot uses a simple web service from Yahoo.com to download historical stock data in
comma - separated format. Type the following URL into a web browser http://ichart.yahoo.com/

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 1 -

http://ichart.yahoo.com/table.csv?s=AAPL&a=3&b=19&c=2009&d=6&e=12&f=2009&g=d&ignore=.csv
http://ichart.yahoo.com/table.csv?s=AAPL&a=3&b=19&c=2009&d=6&e=12&f=2009&g=d&ignore=.csv

table.csv?s=AAPL&a=3&b=19&c=2009&d=6&e=12&f=2009&g=d&ignore=.csv. You should see
text that looks something like this.

 Date,Open,High,Low,Close,Volume,Adj Close

2009-06-18,136.11,138.00,135.59,135.88,15237600,135.88
2009-06-17,136.67,137.45,134.53,135.58,20377100,135.58
2009-06-16,136.66,138.47,136.10,136.35,18255100,136.35
2009-06-15,136.01,136.93,134.89,136.09,19276800,136.09
2009-06-12,138.81,139.10,136.04,136.97,20098500,136.97
2009-06-11,139.55,141.56,138.55,139.95,18719300,139.95
2009-06-10,142.28,142.35,138.30,140.25,24593700,140.25
2009-06-09,143.81,144.56,140.55,142.72,24152500,142.72
2009-06-08,143.82,144.23,139.43,143.85,33255400,143.85

Most of the work for AAPLot is concentrated in two objects, APYahooDataPuller, which
downloads, parses, and stores the data from Yahoo.com, and AAPLotViewController, which displays
the data in a plot. The method from APYahooDataPuller that constructs a URL with a target start
and end date is below. On application launch, the AAPLotViewController creates an
APYahooDataPuller instance. It downloads and parses the csv data and then calls the
APYahooDataPullerDelegate method dataPullerDidFinishFetch: of the AAPLotViewController. The view
controller then draws a plot into a layer of its view.

APYahooDataPuller.m URL string construction

-(NSString *)URL;
{

 unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit | NSYearCalendarUnit;

 NSCalendar *gregorian = [[NSCalendar alloc] \
 initWithCalendarIdentifier:NSGregorianCalendar];

 NSDateComponents *compsStart = [gregorian components:unitFlags fromDate:targetStartDate];
 NSDateComponents *compsEnd = [gregorian components:unitFlags fromDate:targetEndDate];

 [gregorian release];

 NSString *url = [NSString stringWithFormat:@"http://ichart.yahoo.com/table.csv?s=%@&", \
 [self targetSymbol]];
 url = [url stringByAppendingFormat:@"a=%d&", [compsStart month]-1];
 url = [url stringByAppendingFormat:@"b=%d&", [compsStart day]];
 url = [url stringByAppendingFormat:@"c=%d&", [compsStart year]];

 url = [url stringByAppendingFormat:@"d=%d&", [compsEnd month]-1];
 url = [url stringByAppendingFormat:@"e=%d&", [compsEnd day]];
 url = [url stringByAppendingFormat:@"f=%d&", [compsEnd year]];
 url = [url stringByAppendingString:@"g=d&"];

 url = [url stringByAppendingString:@"ignore=.csv"];
 url = [url stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
 return url;
}

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 2 -

http://ichart.yahoo.com/table.csv?s=AAPL&a=3&b=19&c=2009&d=6&e=12&f=2009&g=d&ignore=.csv
http://ichart.yahoo.com/table.csv?s=AAPL&a=3&b=19&c=2009&d=6&e=12&f=2009&g=d&ignore=.csv
http://livepage.apple.com/
http://livepage.apple.com/

Build and run the AAPLot example. Depending on whether you have an internet connection,
you should see something that looks like one of the two images below.

It’s already a modestly useful application. We might add some text to warn the user if there
was a problem while trying to retrieve the graph from the internet, we could also remove the
empty graph from the UI when there isn’t a connection, call it a day, and release. You certainly
wouldn’t be the first to be tempted to do that.

We’ll be using quite a lot of free and open source code in the examples for this chapter, all of
which have licenses that allow for redistribution and commercial use. The plotting library used in
AAPLot is from core-plot. It’s an impressive new project by a group of developers interested in
graphing, charting and plotting for the iPhone and the Mac. During WWDC 2009, Apple
sponsored a code-a-thon to jumpstart its development. One of its stated goals is to maintain a
tight integration with Apple’s core technologies like Core Animation, Core Data, and Cocoa
bindings. You can read more and download the latest code at http://code.google.com/p/core-plot/.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 3 -

http://code.google.com/p/core-plot/
http://code.google.com/p/core-plot/

Storing data between runs

A simple, and often big, usability win is to cache any downloaded information to disk and
present that data to the user as a placeholder before attempting to download any new data.
Assuming the user has downloaded the data they wants to see at some point in the past, they can
see the version that your application downloaded last time it was run. Also, if your application is
host to a type of data that the user would normally want to read while offline, perhaps a
document reader like Amazon’s amazing Kindle application, it’s a great plus to store anything the
user has viewed. With data that can get stale fairly quickly, like stock prices, it is still better to show
the user something rather than nothing while perhaps signaling an unobtrusive way that the data is
a little stale.

To add caching logic to the AAPlot application, we will add a mechanism to save to and load
from disk a given set of financial data. On launch, we’ll show the cached data, then attempt to
download new data. If we are able to get new data, we’ll compare it to our old data and we’ll
overwrite the old data and update the UI only if it’s stale.

With the iPhone’s NAND flash memory, writing is expensive both in terms of speed and in
terms of hardware lifetime. It will eventually wear out with use. Apple recommends that you
write to disk only when necessary. Since our application checks to see if the data is stale, it is
unlikely to download stock data more than once or twice per day so we can reasonably store it to
disk when it arrives. If our data were more often malleable, we might consider storing it only
when the application closes or if we were run out of memory. Apple supplies a convenience
method in your application’s delegate where you can save data before the app closes:

 -applicationWillTerminate:

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 4 -

using plists to persist data

Since we are already using an array of NSDictionarys to store our data within the
APYahooDataPuller, it is trivial to persist it because an NSDictionary or an NSArray can be written to
disk as a property list as long as it contains only property list objects (instances of NSData, NSDate,
NSNumber, NSString, NSArray, or NSDictionary). The NSDecimalNumbers we are using are subclasses
of NSNumber, so we can store those with one caveat: they’re going to get converted to floating
point first, which will reduce their precision. For demonstration purposes we’ll just round them
when reading them back in. The precision we lose might cause a graph line to move by a pixel,
which isn’t a big deal for this application. Let’s add some caching methods to APYahooDataPuller.

First we’ll add a method called plistRep that returns a dictionary representation of the
APYahooDataPuller’s data. Then we’ll add a method that writes that dictionary to a file, calling the
NSDictionary writeToFile:atomically: method. We should also take this opportunity to further
modify APYahooDataPuller to better model our new strategy. Since we are caching the startDate
and endDate values to disk and will need them for comparison later, we will want to add a few
instance variables to track the dates we want from the server and also the symbol we’re looking
for, which may be different from those we’re loading from the cache, and change our designated
initializer accordingly. We should also change the behavior with respect to notifying our delegate.
Since we are caching financial data, it’s possible that our target startDate, endDate, and symbol will
match that which is already cached. If that is the case, we won’t need to reload the graph and we
should probably not even notify our delegate. We’ll change the interface with our delegate so that
we only notify when the financial data changes as a result of a fetch.

APYahooDataPuller.m persistence methods

- (NSDictionary *)plistRep
{
 NSMutableDictionary *rep = [NSMutableDictionary dictionaryWithCapacity:7];
 [rep setObject:[self symbol] forKey:@"symbol"];
 [rep setObject:[self startDate] forKey:@"startDate"];
 [rep setObject:[self endDate] forKey:@"endDate"];
 [rep setObject:[self overallHigh] forKey:@"overallHigh"];
 [rep setObject:[self overallLow] forKey:@"overallLow"];
 [rep setObject:[self financialData] forKey:@"financalData"];
 return [NSDictionary dictionaryWithDictionary:rep];
}

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag;
{
 NSLog(@"writeToFile:%@", path);
 BOOL success = [[self plistRep] writeToFile:path atomically:flag];
 return success;
}

Where are we saving our data to, exactly? <<TODO: Picture of the directory structure?>>

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 5 -

When your application is installed on the iPhone or the iPhone simulator, its application bundle
includes a sandboxed subdirectory for storing user data. You can get the path to that bundle like
this:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

We append AAPL.plist to the path in documentsDirectory when we store the plist data file.

Rename the dataPullerDidFinishFetch delegate method in AAPLotViewController.m

Now we need to modify the AAPLotViewController to use our new delegate method.

Replace this:

-(void)dataPullerDidFinishFetch:(APYahooDataPuller *)dataPuller;

With the more accurately named:

-(void)dataPullerFinancialDataDidChange:(APYahooDataPuller *)dataPuller;

Build and run the application while connected to the internet. It should look about the same as
before. Now disable your internet connection and run the application again. The graph should
render just as it did before using the data that was cached to disk on the first run. If your
application stores more critical data, perhaps business documents, your users will appreciate having
their content available to them anywhere. <<<Examples/02AAPLPlotCachePlist>>>

Shipping AAPLot with placeholder data

You never get a second chance to make a first impression. If a user downloads your application
on the App store and then finds himself without an internet connection the first time they use it,
having nothing to look at can be disappointing. That user may never run your application again.
Many applications would benefit from having some kind of default local data, even if it is just
something to show the user what it will look like when they are able to get fresh data. To ship a
default version of the AAPL.plist with our application, we will first need to retrieve one from the
simulator.

iPhone simulator spelunking

The iPhone simulator loads its library of applications and data from your home directory in ~/
Library/Application Support/iPhone Simulator/User/Applications/. Each application is housed in a
directory named with a UUID. The easiest way to find our AAPL.plist is to empty this directory,
build and run our application, and then retrieve it from the newly created directory. Open a

If the graph does not draw when you run the application without an internet
connection, you’re likely re-installing the application and overwriting the Documents folder
with an empty one each time you install it. Instead of running the app using Xcode’s build
and run, try running the application by touching or clicking on it on the phone or in the
simulator without reinstalling.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 6 -

Terminal and issue the following command; be aware that this will delete all applications from the
simulator and all of their user data:

rm -rfv ~/Library/Application\ Support/iPhone\ Simulator/User/Applications/*

Making sure your internet connection is live, build and run the application. You’ll find the AAPL.
plist in the ~/Library/Application\ Support/iPhone\ Simulator/User/Applications/SOMELONGUUID/
Documents/ directory. Copy it into the AAPLot code directory. Now add it as a resource in
Xcode. Reference Type: can be set to Default. Make sure that Add To Target is also checked so
Xcode knows to copy it during the build. <<<PICTURE SHOWING THE ABOVE>>>

Now we need to write a method that checks to see if AAPL.plist is in the Documents
directory and, if it is not, we should instead load the plot from the application’s resources folder.

-(NSString *)faultTolerantPathForSymbol:(NSString *)aSymbol
{
 NSString *docPath = [self pathForSymbol:aSymbol];;
 if (![[NSFileManager defaultManager] fileExistsAtPath:docPath]) {
 //if there isn't one in the user's documents directory, see if we ship with this data
 docPath = [[[NSBundle mainBundle] resourcePath] \
 stringByAppendingPathComponent:[NSString stringWithFormat:@"%@.plist", aSymbol]];
 }
 return docPath;
}

-(NSDictionary *)dictionaryForSymbol:(NSString *)aSymbol
{
 NSString *path = [self faultTolerantPathForSymbol:aSymbol];
 NSMutableDictionary *localPlistDict = [NSMutableDictionary dictionaryWithContentsOfFile:path];
 return localPlistDict;
}

Once again in Terminal remove all applications from the simulator so we can see how the
application behaves as it will when it is used for the first time:

rm -rfv ~/Library/Application\ Support/iPhone\ Simulator/User/Applications/*

Now disable your internet connection again. Build and run. Our default AAPL.plist should load
even though the application is freshly installed with no previously-fetched data. The version of
AAPLot that includes all of these caching changes can be found at <<<Examples/
03AAPLPlotDefaultData>>>

Extending the app for multiple stock graphs: StockPlot

In a shipping application, indicating to the user that the data they’re seeing is stale and
warning them that the application would really benefit from an internet connection is a good
idea. See Apple’s Reachability sample code for information on how to test for the availability
of a server on the internet. See also the Human Interface Guidelines for the iPhone...
<<TODO: LINKS TO Reachability SAMPLE CODE AND HIG>>

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 7 -

 Now we are going to reuse some of the objects from
the AAPLot application in an app called StockPlot that
loads a whole bunch of stocks into a table that the user
can select to push a graph onto the screen. Things get
rather more complicated when there is a lot of data to
download and store. Our earlier strategy of download,
then parse, then cache, then display from the AAPLot
application might not hold-up when we try it with a lot
of stocks at the same time. Let’s also see what happens
when we try to load graphs in response to user input.
StockPlot is in <<<Examples/
04StockPlotConcurrentDownloads>>>

StockPlot will ship with Yahoo, Microsoft, Google, and
Apple stock data and will attempt to download a little
more than a dozen other technology companies’ prices
on launch. The RootViewController of the project handles
table view loading and APYahooDataPullerDelegate
duties. It loads a summary of whatever data it can find
in its array of APYahooDataPuller objects, which it creates
at launch, each of which act just like they did in AAPLot
by loading from disk, downloading, and notifying of
changed data. The RootViewController object also has a
small amount of code to limit the number of concurrent
downloads to 3 connections at a time. Build and run it

on the simulator. If you’re online (and you don’t blink), you
will see the little exclamation point cautionary icons in the

table cells replaced by progress indicators while the corresponding APYahooDataPuller object
downloads, then they disappear once fully loaded. If you click on a table cell, the now-familiar graph
is rendered and animated on screen through the canonical UINavigationController viewcontroller-
pushing methods.

Now install and run it on your device. It seems like it’s pretty slow to download, huh? It’s
nothing like the simulator experience. The user interface even freezes in fits and starts while the
data comes in; you can’t even scroll the table view most of the time. Once everything is
downloaded, the interface is really responsive. We could chose to download only the data we
need for the table view on launch, but that would only push our lack of responsiveness somewhere
else, which would bring us dangerously close to death by a thousand paper cuts; It would probably
take quite a while to load the data for a given graph on demand. You should also try to build and
run in release configuration to see if perhaps the sluggish UI has anything to do with a certain lack
of compiler optimizations. Nope. Let’s profile this in Shark to see what’s going on.

Shark

Shark is Apple’s profiler. Attach it to a running process and it takes a sort of snapshot of what
portion of your binary is running at regular intervals. Shark shows you a sort of weighted statistical

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 8 -

table of how many times through a given method or line of code it counted. The more times it
sampled your code in a given area, the more time your code spends in that area. You should always
run Shark on a release build of your application because you will want to profile the compiler-
optimized code with which your application will ship. There is one problem. The default settings
for release also strip debugging symbols from your binary, which makes Shark look more like a
hexadecimal puzzle game for those who can solve rubik’s cube, of which I am certainly not one.
Copy the release build configuration into one called Profiler by opening the Project info menu in
Xcode duplicating the Release configuration.

Then in the Build tab, uncheck the boxes for stripping debug symbols.

We have one thing left to do before we can test our downloading problem. Once your
application is running, it takes a little while to attach the profiler. In order to test the problematical
code, we need a way of attaching shark at the very start of the application run. While it might
seem easy to drop a breakpoint in gdb in your main() function, I have had some trouble getting
shark to connect while gdb is also attached. Instead, we’ll drop a 10 second sleep() call in
applicationDidFinishLaunching. That should give us enough time to attach Shark.

You can usually find Shark.app in in /Developer/Applications/Performance Tools/. Run it and
select Network/iPhone Profiling from the Sampling menu. Delete the copy of StockPlot with
cached data from your phone by using the Xcode organizer or directly on the iPhone. Connect
your iPhone to your computer, build, and run the application. Once it’s running (and sleeping), you
can select the check mark in the menu next to the name of your iPhone, and select TimeProfile
(WTF) from the Config dropdown, and Select StockPlot from the Target dropdown. As soon as
you see log messages indicating download activity, hit the Start button; once the messages stop, hit
the stop button. If you are a coffee drinker, now is a good time to go make a cup. This part takes a
little time.because a lot of the processing that Shark needs to figure out what happened during the
profiling run is actually performed on the device itself.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 9 -

Once Shark and your iPhone are finished, you might see a window with all kinds of
hexadecimal jibberish that I promised wouldn’t happen. If so, you will need to symbolicate the time
profile by telling shark where the symbol-rich binary is located on your filesystem. Click on File-
>Symbolicate, then navigate to the iPhoneos build directory corresponding to your Profiler build
settings. Make sure you see type: ARM on the window when you select it. Now shark should have
familiar method names. Poking around in the trace we see that most of the work is being done in
parsing the comma-separated strings and writing the plists to disk. That makes sense, we’re using
an asynchronous download, so that shouldn’t freeze our UI, but the string parsing and caching to
disk is blocking the main thread.

Even if we ship with 20 plists (which we probably would), they’ll definitely be stale once the
application gets into the users’ hands. We don’t want our application to be this unresponsive the
first time it is run. What can we do about this? We have several options. At the moment, we’re
downloading and parsing all three months worth of data from Yahoo, because that’s the easiest
thing to do. We could figure out how much data we already have on disk and only download the
missing data. We are also spending a fair amount of time converting NSNumbers to the
NSDecimalNumbers we need for core-plot. We could change core-plot to accept NSNumbers or
we could change our storage to CoreData, which retrieves NSDecimalNumbers without conversion.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 10 -

The problem with the above optimizations, some of which we may chose to do before shipping, is
that they will all incur unpredictable amounts of overhead on the main thread, thus we would have
to test a lot of use cases. It may also prove difficult to predict just how much data we’ll need. If
your user uses your application often enough to pull down small chunks (in this case, fewer days) of
data, which is not guaranteed, we might do well to avoid downloading duplicate data. We might
also like to allow the user to add stocks to plot, which would definitely require a lot of parsing the
first time the stock data is downloaded and it adds yet another stock to our queue on application
launch. Perhaps we would do well to try to pull the processing off of the main thread so we can
unblock the user interface once and for all, thus freeing us from all of these problems at once.

Concurrency

Cause it's gonna be the future soon. And I won't always be this way. When the things that make
me weak and strange get engineered away.

 -Jonathan Coulton

 lyrics for The Future Soon

NSOperation NSOperationQueue, and Blocks

Wait a tick. Did I just suggest multi - threading?

Okay. Threading is hard, but the engineers at Apple and elsewhere keep making it easier for us.
We have all of these cores on our desktops because the hardware engineers keep slicing silicon so
concurrency keeps getting more and more important. NSOperationQueue and NSOperation remove
much of the pain of multi-threading. NSOperationQueue is a sort of thread pool that maintains an
array of pending NSOperation objects that it schedules to run in a background thread based on a
number of factors from system hardware to system state to the relative priority of a given
NSOperation. You can even declare one NSOperation dependent on the completion of another. You
normally subclasses NSOperation to override one method: main, which is where you put the work
you want on a background thread. It’s called when the operation is run. The only thing we as
programmers have to be wary of in this situation are the usual data access caveats. Try not to
mutate data at the same time you’re reading it. <<<todo: work in a link to http://
developer.apple.com/Cocoa/managingconcurrency.html>>> There are tools for this, too. We can
use the various permutations of performSelectorOnMainThread:... and @synchronized() directives are
useful, too.

There is a helpful tool in other languages for this kind of problem called blocks. Blocks are
another name for closures, with which you may have familiarity from Ruby, LISP, Python, SmallTalk,
and others. They’re like function pointers that take a (usually const) snapshot of their local stack
variables so you can run them later with the information you shove in them now. They’re little
portable units of computation that carry their state around that are extraordinarily useful with
concurrent operations. Because they have a snapshot of their state, they’re easier to deal with in a
concurrent environment. Useful though that they would be, they don’t officially exist yet. They’re
being added to Objective-C by the folks who are bringing us the open source Clang and LLVM
projects <<<http://lists.cs.uiuc.edu/pipermail/cfe-dev/2008-August/002670.html http://

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 11 -

http://developer.apple.com/Cocoa/managingconcurrency.html
http://developer.apple.com/Cocoa/managingconcurrency.html
http://developer.apple.com/Cocoa/managingconcurrency.html
http://developer.apple.com/Cocoa/managingconcurrency.html
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2008-August/002670.html
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2008-August/002670.html
http://www.macresearch.org/cocoa-scientists-part-xxvii-getting-closure-objective-c
http://www.macresearch.org/cocoa-scientists-part-xxvii-getting-closure-objective-c

www.macresearch.org/cocoa-scientists-part-xxvii-getting-closure-objective-c >>> and there is no
guarantee, though it seems likely, that Apple will bring them to the iPhone. If or when they do add
them to the iPhone, switching from Plausible blocks will be simple. You’ll revert to Apple’s compiler
and remove the Plausible blocks framework from your project.

These additions to the objective-C language and runtime are open source and and they’ve
been implemented in gcc 4.2, so it is actually quite possible to back port them to the iPhone, so of
course they have been. Plausable Blocks from Plausible Labs is available at http://code.google.com/
p/plblocks/ and is, as of this writing, shipping their second beta of a gingerly patched version of the
standard, stable GCC 4.2 compiler that ships with the OS X Leopard (10.5) and the iPhone
software development kits. I have found it to be very stable and It works with both iPhone OS 3.0
and 2.2.1 targets. There is some example code for their use on the primary author’s github
repository available at http://github.com/landonf/block_samples/tree/master. Next we’ll install the
Plausible Blocks compiler and add its static framework to our project so we can easily place our
downloading, parsing, and saving code in a block to be executed by an NSOperation to be
scheduled by an NSOperationQueue (in the house that Jack built). All of the things that make our
application weak and strange are being gradually engineered away and we’re even using future
technology!

Installing the Plausable Blocks compiler and adding it to our project

First, download the latest dmg of the Plausible
Blocks compiler and frameworks from http://
code.google.com/p/plblocks/downloads/list. Mount
the dmg and run the included package. This installs
the patched compiler as an Xcode plugin.

Now copy the iPhone Runtime folder, which
includes the static framework we’ll need to link
against, into the StockPlot project. Double-click on
the StockPlot target, select the General tab, and
click the plus (+) button in the lower left corner of

the window to add a new Linked Library. Click Add Other in the resulting sheet, navigate to and
select the framework for addition.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 12 -

http://www.macresearch.org/cocoa-scientists-part-xxvii-getting-closure-objective-c
http://www.macresearch.org/cocoa-scientists-part-xxvii-getting-closure-objective-c
http://code.google.com/p/plblocks/
http://code.google.com/p/plblocks/
http://code.google.com/p/plblocks/
http://code.google.com/p/plblocks/
http://github.com/landonf/block_samples/tree/master
http://github.com/landonf/block_samples/tree/master
http://code.google.com/p/plblocks/downloads/list
http://code.google.com/p/plblocks/downloads/list
http://code.google.com/p/plblocks/downloads/list
http://code.google.com/p/plblocks/downloads/list

Now we need to tell Xcode to use the special compiler. Double click the StockPlot target to
bring up the build settings window. Select the Build tab. Select All Configurations from the upper-
left dropdown. Now select the GCC 4.2 (Plausible Blocks) compiler. We now have blocks
support.

We’re going to use some convenience categories and objects from the Plausible Blocks sample
code mentioned earlier. They’re included with the sample code in <<Examples/
05StockPlotParallelDownloads>> in files called NSThread+PLBlocks.h/m and NSOperationQueue
+PLBlocks.h/m. Add them to the StockPlot project.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 13 -

Using Blocks, NSOperation, and NSOperationQueue in StockPlot

To get asynchronous downloading, parsing, and saving the first thing we need to do is make
something synchronous. Go figure. Our downloading code is using NSURLConnection to download
the data asynchronously from yahoo. NSURLConnection doesn’t like to be launched asynchronously
from any thread other than the main thread because that would be silly. This isn’t a big deal,
because we’re going to place all downloading, parsing, and saving in a background thread using the
NSOperation/NSOperationQueue objects. This has the added benefit of making our downloading
code simpler. Instead of asynchronously adding data to a NSMutableData object and defining a
bunch of NSURLConnectionDelegate methods, we need only call the NSURLConnection
sendSynchronousRequest:returningResponse:error: method. It blocks execution while downloading and
can be run from a non-main thread, which is exactly what we want. Every time we call a delegate
method from the background thread, we make sure that the delegate gets called on the main
thread. Usually, we would use the performSelectorOnMainThread:... family of calls, but it’s easier to wrap
them in a block and have our new category on NSThread execute the block on the main thread.
Here is the new fetchIfNeeded method.

APYahooDataPuller.m

-(void)fetchIfNeeded
{
 if (self.loadingData) return;

 //Check to see if cached data is stale
 if ([self staleData])
 {
 self.loadingData = YES;
 NSString *urlString = [self URL];
 NSLog(@"Fetching URL %@", urlString);
 NSURL *url = [NSURL URLWithString:urlString];
 NSURLRequest *theRequest=[NSURLRequest requestWithURL:url
 cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];
 // create the connection with the request
 // and start loading the data
 NSURLResponse *theResponse;
 NSError *theError;
 [self downloadWillStart];
 self.receivedData = [NSURLConnection sendSynchronousRequest:theRequest
 returningResponse:&theResponse
 error:&theError];
 if(theError)
 {
 self.loadingData = NO;
 self.receivedData = nil;
 NSLog(@"err = %@", [theError localizedDescription]);
 [[NSThread mainThread] pl_performBlock: ^{
 if(delegate && [delegate respondsToSelector:@selector(dataPuller:downloadDidFailWithError:)])
 {
 [delegate performSelector:\
 @selector(dataPuller:downloadDidFailWithError:)
 withObject:self
 withObject:theError];

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 14 -

 }
 }];
 [self connectionEnded];
 }
 else
 {
 self.loadingData = NO;
 NSString *csv = [[NSString alloc] initWithData:self.receivedData encoding:NSUTF8StringEncoding];
 [self populateWithString:csv];
 [csv release];
 self.receivedData = nil;
 [self writeToFile:[self pathForSymbol:self.symbol] atomically:NO];
 [self connectionEnded];
 }
 }
}

This method is called from the RootViewController’s updateDownloadStatus method from within a
pl_addOperationWithBlock class method that has been added to NSOperationQueue. This class method
adds a PLBlockOperation to the queue and schedules it for execution. Notice that blocks need to
be copied rather than retained. The NSOperation object subclass PLBlockOperation that gets
instantiated here copies the block we pass it into an ivar (blocks are also objective-C objects!) and
simply executes it in its main method. Since all of the stack variables are copied into the block, we
needn’t worry if they change or go out of scope before the block is called.

-(void)updateDownloadStatus
{
 while ([stocksToDownload count])
 {
 APYahooDataPuller *dp = [stocksToDownload objectAtIndex:0];
 NSOperationQueue *q = [(StockPlotAppDelegate *) [[UIApplication sharedApplication] delegate]
globalQ];
 [q pl_addOperationWithBlock: ^{
 [dp fetchIfNeeded];
 }];
 NSUInteger idx = [stocks indexOfObject:dp];
 NSUInteger section = 0;
 NSIndexPath *path = [NSIndexPath indexPathForRow:idx inSection:section];
 UITableViewCell *cell = [self.tableView cellForRowAtIndexPath:path];
 if(nil != cell)
 [self setupCell:cell forStockAtIndex:idx];
 [stocksToDownload removeObject:dp];
 }
}

Uninstall, build and run on the device. NSOperationQueue tends to be conservative on the
iPhone, so you’ll probably see stock information downloaded one symbol at a time; the application

Aside on block syntax goes here. What’s with the funny carat symbol?

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 15 -

will remain responsive throughout. Just for fun, let’s uninstall it and run it through shark again. If
you’ve deleted it, add in that temporary call to sleep() as well.

Notice that the application didn’t really run any faster, we’ve just parallelized it. Multi-threading
isn’t so painful after all. Welcome to the future.

Displaying large amounts of data

How easily the iPhone UI can be brought to its knees by performing something as seemingly
simple as downloading, processing, and caching data to disk. Now we’re going really make it hurt
by throwing it an application that has to work very hard to draw anything at all. In this section, we’ll
examine a project for drawing a vertical succession of very large images a zoomable scroll view.
So that we might encounter some of the difficulties inherent in dealing with large amounts of data,
we are going to add an admittedly somewhat contrived requirement: the images cannot be pre-
sliced, thumbnailed or otherwise massaged outside of the device. All drawing code must use the
original large png images shipped with the application. If we can make this example perform
reasonably well, we’ll have a reusable framework for drawing any processor-intensive tiled scroll
view. <<<IMAGES FROM NASA IMAGE OF THE DAY I THINK... NEED TO FIND COPYRIGHT
INFO OR DIFFERENT IMAGES...>>>

We’ll begin with a modified version of Apple’s <<<TiledScrollerThingForgotItsName+ url>>>
example available at <<< URL >>> called BigViewThing. The original Apple sample is designed to
draw view tiles that are chunks of a larger image; it shows how to reuse view objects in two
dimensions similar to the way the UITableView dequeues and enqueues rows in one dimension. In
the case of Apple’s sample, the image chunks are meant to ship with the application. BigViewThing
is already partially implemented as a result of being derived from this sample code. It handles
double-tap to zoom, suspends tile redraws when the user is interacting with the view and it draws
only onscreen tiles. It’s in the <<<Examples/06BigViewThingOriginal>> directory of the sample
code. Build it and run. There are quite a number of large images in it, so it will take a while to copy
over to the device.

Apple has not officially announced any intention to bring blocks to the iPhone, though it’s
a fair bet that they will do so once blocks are added to the desktop runtime and compiler
collection. You should very thoroughly test any application using a non-standard compiler
and be prepared for things to break in spectacular and unexpected ways. That said, Plausible
Blocks appears well on its way to release-level stability.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 16 -

Once you have it running, you’ll notice a few issues. Whenever a new tile comes on screen, it
takes a while to render. The image doesn’t redraw at higher resolution when you zoom. It remains
grainy. Let’s profile it in Shark to see what is going on. There is no need to add a sleep() to this
application as the performance problems appear throughout rather than just on startup. Start the
application and attach Shark. Remember, the longer you sample, the longer you will wait for results
so scroll around enough to get it to draw just a couple of images.

Almost all of the application’s execution time is being used in decompressing and drawing the
png images. Our goal with this demonstration application is to simulate what happens when
drawing very heavy, data intensive views. You never know when a user is going to try to load a
giant document or image into your application. Some developers have run into this problem with
Apple’s UIWebView. It was designed to render small email attachments in various formats in the
Mail application and to render web content. Several document reader applications fail when the
user tries to load a large document because they are trying to leverage UIWebView to draw heavy
content. It clearly isn’t designed for such content.

Zooming a UIScrollView

One thing that UIWebView performs very well is the redrawing of zoomed content. In
BigViewThing, we’re currently allowing the scroll view to zoom for us and leaving the content alone
when zooming is finished. This results in an unpleasant grainy appearance because the UIScrollView
that we use to host our content simply applies a scaling affine transform to our content view. It’s
also expanding or contracting its own content size relative to the new drawn size of the overall
view. UIScrollView does this for performance reasons. If it takes three seconds (and it does take
that long right now in our application) to draw a view into a given square of pixels, imagine what it

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 17 -

might look like to animate resizing by redrawing. 1/3 of a frame per second is subpar to say the
least.

Search the internet for “UIScrollView zooming reset resolution” and you’ll find a lot of
developers pulling their hair out trying to get this to look right. A little caveman NSLog
experimentation to figure out what the UIScrollView is really doing can reveal what’s happening
under the covers when you (say) pinch to zoom or directly set the zoomScale property of a
UIScrollView.

UIScrollView internal zooming algorithm

1. UIScrollView checks to see if minimumZoomScale and maximumZoomScale are not equal
to one another. It also checks the current zoomScale to see if it can zoom.

2. If so, it asks the UIScrollViewDelegate for a view to scale during the zoom with the
viewForZoomingInScrollView: method call. We return our content view in the BigViewThing project.

3. As the zoom scale changes, the UIScrollView does two things:

a. It sets an affine transform on the view it is zooming to scale it up or down without
redrawing. It’s a “square” transform that maintains aspect ratio, so there is no distortion.

b. It resets its own contentSize, contentOffset, and zoomScale so as to to hold the content
in place relative to the point about which it is zooming (in the case of pinching, that point
was halfway between your fingers when you put them down).

4. If the zoom was performed with a pinch gesture or through the setZoomScale:animated:
methods, it calls scrollViewDidEndZooming:withView:atScale: on its delegate when the zooming ends.
However, it does not call this delegate method if the animated: argument was NO because the
zoom is set instantly when you call the method. The UIScrollView assumes that you know that it
finishes zooming right away in that case.

5. After zooming, the UIScrollView leaves the affine transform on the view, and it leaves the
stretched contentSize, contentOffset, and zoomScale in place, which is why our view seems
grainy. It’s still being stretched when we zoom.

Armed with knowledge of some of the internal workings of UIScrollView, we can now reset
drawing after a zoom by implementing and calling an updateResolution method when zoom finishes.
My preferred method of updating resolution for zooming is as follows.

UIScrollView resolution update algorithm

1. Take a snapshot of the current (scaled) contentSize and contentOffset.

2. Take a snapshot of the current (unscaled) content view’s frame size; it’s being scaled by an
affine transform, so its actual frame size is the same as it was before zooming.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 18 -

3. Take a snapshot of the current minimum and maximum zoom scales.

4. If your scrollview is its own delegate as it is in BigViewThing, call super to set the minimum
and maximum zoom scale both to 1.0 because setting zoom on self will eventually call
updateResolution again; infinite recursion is so last year.

5. Set the current zoom scale to 1.0, this will rescale the content size internally back to the size
of the content view and reset the affine transform on the content view.

6. Calculate new content offset by scaling the stretched/zoomed offset we took a snapshot of
in step 1. We want the new content to appear in the same place in our scroll view:

a. newContentOffset.x *= (oldContentSize.width / contentViewSize.width);

b. newContentOffset.y *= (oldContentSize.height / contentViewSize.height);

7. Divide the old minimum and maximum zoomScale by the new zoomscale. This scales the
minimum and maximum zoom relative to our new content size. If minimum zoom were 1.0 and
maximum zoom were 2.0, when the user zooms to 2.0 and I reset, my new minimum zoom will
be .5 and my new maximum zoom will be 1.0.

8. Set the content view’s frame.size to the contentSize we took a snapshot of in step 1.

9. Set the scroll view’s contentSize to the scaled contentSize we took a snapshot of in step 1.
This stretches the overall size of the view to match our new zoom level (but without any affine
transform applied).

10. Call the setNeedsLayout method on the scroll view. This will cause layoutSubviews to be called
where we can reset the contentview’s internal subview geometry.

Here is an implementation of the above that we’ll add to our BigViewScrollView. We’ll call it
whenever zooming finishes.

- (void)updateResolution {
 //LogMethod();
 isdblTapZooming = NO;
 float zoomScale = [self zoomScale];

 CGSize oldContentViewSize = [contentView frame].size;
 //zooming properly resets contentsize as it happens.
 CGSize newContentSize = [self contentSize];

 CGPoint newContentOffset = [self contentOffset];
 float xMult = newContentSize.width / oldContentViewSize.width;
 float yMult = newContentSize.height / oldContentViewSize.height;

 newContentOffset.x *= xMult;
 newContentOffset.y *= yMult;

 float currentMinZoom = [self minimumZoomScale];
 float currentMaxZoom = [self maximumZoomScale];

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 19 -

 float newMinZoom = currentMinZoom / zoomScale;
 float newMaxZoom = currentMaxZoom / zoomScale;

 //don't call our own set..zoomScale, cause they eventually call this method.
 //Infinite recursion is uncool.
 [super setMinimumZoomScale:1.0];
 [super setMaximumZoomScale:1.0];
 [super setZoomScale:1.0 animated:NO];

 [contentView setFrame:CGRectMake(0, 0, newContentSize.width, newContentSize.height)];
 [self setContentSize:newContentSize];
 [self setContentOffset:newContentOffset animated:NO];

 [super setMinimumZoomScale:newMinZoom];
 [super setMaximumZoomScale:newMaxZoom];

 // throw out all tiles so they'll reload at the new resolution
 [self reloadData]; //calls setNeedsLayout, among other things for housekeeping
}

Build and run <<<Examples/07BigViewThingZoomAddition>>> in the simulator. The images
should clear - up after a zoom. Speaking of the simulator, this demo application takes a very long
time to install on the device because it’s copying all of the images over USB each time. Since we
are about to spend some time focusing on a single performance bottleneck in our code, image
drawing, we can simulate this slowness in the simulator with a call to sleep(). Avoiding the copy of
those png files will make debugging go a little faster while simulating our problem reasonably well.
Also, I tend to forget to remove these sleep() calls when compiling for the iPhone and wonder why
everything slows down when I move back to the device, so let’s #define this one to only compile
into the simulator target. Add the following to drawRect: in BigPageView.m

 if(!drawingSuspended)
 {
 CGContextSetFillColorWithColor(context, [[UIColor whiteColor] colorWithAlphaComponent:0.5].CGColor);
 CGImageRef tempImage = [UIImage imageNamed:self.imageName].CGImage;
#if TARGET_Iphone_SIMULATOR
 sleep(2.5);
#endif
 CGContextDrawImage(context, tempbounds, tempImage);
 drawnPageOnce = YES;
 }

Build and run in the simulator. You should see similar sluggishness compared to running on the
phone. Let’s tackle that problem now.

Drawing into an offscreen context

Given our self-imposed limitations, we can’t make the drawing much faster without digging into
openGL. Even then, we’ll have to decode the images and throw them up into texture memory no
matter what we do, so the drawing itself would be fast, but we know from our Shark profile that
the decoding is what takes a long time. It’s time to take our NSOperationQueue and blocks magic to
the next level and parallelize the drawing.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 20 -

Algorithm for drawing into an offscreen context

1. The first time one of our BigViewPageView objects is asked to draw, it will create a
cgContext type instance variable into which it will quickly draw the half opaque white
background that we are currently drawing as a placeholder when the BigViewPageView is
inactive like so:

-(void)initOffscreenContext // do this on the MAIN thread
{
 CGSize layerSize = [self bounds].size;
 layerSize.height = floorf(layerSize.height);
 layerSize.width = floorf(layerSize.width);

 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 CGContextRef ctx = (CGContextRef) [(id) CGBitmapContextCreate(NULL, layerSize.width, layerSize.height, \
 8, layerSize.width*4, colorSpace, kCGImageAlphaPremultipliedLast) autorelease];
 CGColorSpaceRelease(colorSpace);
 CGContextTranslateCTM(ctx, 0, layerSize.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);

 CGFloat tx = layerSize.width * (1.0 - scale) * 0.5;
 CGFloat ty = layerSize.height * (1.0 - scale) * 0.5;
 CGRect tempbounds = CGRectZero;
 tempbounds.size = layerSize;
 tempbounds = CGRectIntegral(CGRectInset(tempbounds, tx, ty));
 CGContextSetShadow(ctx, CGSizeMake(5,5), 5);
 CGContextSetFillColorWithColor(ctx, [[UIColor whiteColor] colorWithAlphaComponent:0.5].CGColor);
 CGContextFillRect(ctx, tempbounds);
 self.offscreenContext = (id) ctx;
}

2. It will draw whatever is in the offscreen context to screen in drawRect:

-(void)drawRect:(CGRect)rect
{
 //NSLog(@"drawRect");
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextRef osc = (CGContextRef) self.offscreenContext;
 UIGraphicsPushContext(osc);
 CGImageRef tempImage = CGBitmapContextCreateImage (osc);
 UIGraphicsPopContext();
 if(tempImage)
 {
 CGContextDrawImage(context, self.bounds, tempImage);
 CGImageRelease(tempImage);
 drawnPageOnce = YES;
 }
}

Danger Will Robinson! UIKit is not threadsafe. Try to draw to screen from another
thread and bad things might happen, ugly things are almost guaranteed to happen. We can,
however, draw our images into offscreen buffers (actually, cgContexts) then grab the pixels
that we need to throw on the screen once the buffer is filled with data. There is nothing
stopping us from filling that data asynchronously and reading it from the main thread.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 21 -

3. It will generate an NSOperation (that calls a block, of course) that will fill a new cgContext
with the image data we will need:

-(void)createOffscreenCtx
{
 NSOperationQueue *q = [(BigViewThingAppDelegate *) [[UIApplication sharedApplication] delegate]
globalQ];
 PLBlockOperation *op = [PLBlockOperation blockOperationWithBlock:^{
 //imgRef = [[UIImage imageNamed:imageName] CGImage];
 NSString* bundlePath = [[NSBundle mainBundle] bundlePath];
 UIImage *img = [UIImage imageWithContentsOfFile:[NSString stringWithFormat:@"%@/%@", bundlePath,
 imageName]];
 CGImageRef imgRef = [img CGImage];

 CGSize layerSize = [self bounds].size;
 layerSize.height = floorf(layerSize.height);
 layerSize.width = floorf(layerSize.width);
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 CGContextRef ctx = (CGContextRef) [(id) CGBitmapContextCreate(NULL, layerSize.width,
 layerSize.height, 8,
 layerSize.width*4, colorSpace,
 kCGImageAlphaPremultipliedLast) autorelease];
 CGColorSpaceRelease(colorSpace);
 CGContextTranslateCTM(ctx, 0, layerSize.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);

 CGFloat tx = layerSize.width * (1.0 - scale) * 0.5;
 CGFloat ty = layerSize.height * (1.0 - scale) * 0.5;
 CGRect tempbounds = CGRectZero;
 tempbounds.size = layerSize;
 tempbounds = CGRectIntegral(CGRectInset(tempbounds, tx, ty));
 CGContextSetShadow(ctx, CGSizeMake(5,5), 5);
#if TARGET_Iphone_SIMULATOR
 sleep(2.5); //fake slow drawing on the simulator
#endif
 CGContextDrawImage(ctx, tempbounds, imgRef);
 self.offscreenContext = [[(id) ctx retain] autorelease];
 NSLog(@"Image loaded for %d", pageToDraw);
 //when we’re done filling, we need to redisplay content
 [self performSelectorOnMainThread:@selector(setNeedsDisplay) withObject:nil waitUntilDone:NO];
 }];
 [q addOperation:op];
}

4. When the NSOperation finishes, it will setNeedsDisplay on the view in the main thread so the
view knows to draw the image data to screen. We can do this in real time. Drawing from a
buffer is fast.

5. Any time the BigViewPageView is asked to drawRect, it pulls the image data from the current
cgContext for drawing; it’s also filling new cgContexts in the background if we change the
expected drawing size of the image through some bizarre action like zooming. Before the new
buffer is ready, our image will stretch to fill, possibly pixelated, while the NSOperation is preparing
new data.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 22 -

The sample code in <<<Examples/08BigViewThingOperationQueueRegular>>> has all of the
additional code. It also prints the contents of the NSOperationQueue on a timer to show us what is
in there. Build and run in the simulator. The application should remain responsive.

Or is it? Every time I zoom in or zoom out on an image, the view pushes another NSOperation
onto the queue. If you watch the log messages printing the contents of the NSOperationQueue, you
will see that there are an ever-growing number of operations for each view getting pushed when
there is a lot of zooming going on. This makes the app seem like it’s updating less and less often.
The queue eventually clears, but not after drawing a given image several times, usually at zoom
levels at which it is not currently needed to be rendered.

Wouldn’t it be nice to be able to cancel only certain pending operations on the
NSOperationQueue? You can. You just call the cancel method on your NSOperation object and the
queue will eventually (but not immediately) remove it, but it will never actually run it. We can add
a weak reference to our NSOperation subclass to point back to the BigViewPageView object that
placed it on the queue and then ask each NSOperation that belongs to us to cancel before we add
another operation to the queue. This way, we can be sure that there is little wasted CPU time*.

Once we have that weak reference, it’s easy to create a category on NSOperationQueue to
cancel all pending NSOperations in the queue filtered by a NSPredicate.

- (void)cancelOperationsFilteredByPredicate:(NSPredicate *)predicate;
{
 NSArray *ops = [[self operations] filteredArrayUsingPredicate:predicate];
 for (NSOperation *op in ops)
 {
 if(![op isExecuting] && ![op isFinished] && ![op isCancelled])
 {
 [op cancel];
 }
 }
}

If you notice that the NSOperation objects stay in the queue for a while, that is okay. When
NSOperationQueue decides that it is time to run a given operation, it will call start on the
NSOperation and wait for that operation to finish executing. If isCancelled returns YES, the
NSOperation will tell the NSOperationQueue that it is finished right away without ever calling the
main method. Add the cancellation code into our BigViewPageView.

-(void)createOffscreenCtx
{
 NSOperationQueue *q = [(BigViewThingAppDelegate *) [[UIApplication sharedApplication] delegate]
 globalQ];
 NSPredicate *filter = [NSPredicate predicateWithFormat:@"SELF.interestedObject == %@", self];
 [q cancelOperationsFilteredByPredicate:filter];
 PLBlockOperation *op = [PLBlockOperation blockOperationWithBlock:^{
//BUNCH of drawing code here
}];

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 23 -

* * In our implementation, an operation in progress cannot be cancelled, so it’s still possible that the queue will have to
run two operations for a given view in fairly rapid succession.

 [op setInterestedObject:self];
 [q addOperation:op];
}

Other suggestions

BigViewThing is not finished yet. We’ve just implemented something similar in behavior to
CATiledLayer, perhaps we would find that even more performant than our NSOperationQueue
code. NSOperation can have an attached priority. Perhaps we could place a series of low-priority
operations on the drawing queue to fill the cgContext buffers with a low resolution version of
each image so that the user’s offscreen tiles will get drawn in the background using idle CPU
cycles, thus removing the grey placeholders. When we zoom back and forth between different
levels, we might not really need to re-render each time. Perhaps the transform from big zoomed-in
image to small zoomed-out image looks okay to us without a redraw. Buffer size issues aside,
perhaps we could allow a delay in redrawing the tiles at a smaller size when the user zooms out by
lowering the priority of that operation, that way operations that dramatically change the user
experience will run first*.

Observations, tips, tricks

iPhone programming is embedded systems programming. While you can expect iPhone
devices to become faster and faster over time, programming for iPhone is closer to that of a
Nintendo DS or a LART box than a desktop computer. Our examples will seem slow before we
optimize on the new, faster, iPhone 3GS, just less so than on the original device. It’s always helpful
to learn some embedded system programmers' tricks by programming for even more limited
devices like LARTs or SBCs. You can often sort of “fake it ‘till you make it” when it comes to code
that requires a lot of system resources. UI Response variability is particularly annoying; users don't
know why your app is slow on Edge network. "Sometimes it's slow; sometimes it's not; I dunno
why." is a phrase to which we are becoming perhaps too accustomed. Clever caching of data while
remaining responsive to the user’s input can make an application shine, even when it isn’t really
doing much more than what it did before.

iPhone devices are severely memory constrained, disk read/write speed constrained, and
bandwidth constrained when compared to their bigger iron cousins. Remember that UI and data
share RAM, so you might get memory warnings at seemingly strange times . You’ll notice some
CPU and memory monitoring code in some of the example code, you can use it in your
application to anticipate memory resource shortages and modify your application’s behavior. Once
you do get a memory warning, you receive a short warning and then the system kills your app
without prejudice or allowing you to save precious user data, so be prepared to strip down your
views and your data at a moment’s notice. There is rudimentary handling of that in the
BigViewThing example. Look at the method called memoryWentBoom.

Little summary of NSPredicate here and a link to the docs. ...NSPredicate was added in
iPhone OS 3.0. It is an important part of CoreData. It has been available to Cocoa
programmers on the desktop for a long time. It’s super useful. I missed it.

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 24 -

Summary

...

___OUTLINE:::: ______

Saggau - Apress -- CONFIDENTIAL -- Pre-publication materials

 - 25 -

